Gates Hall's facade features stainless steel panels that mitigate heat loading. (Courtesy Cornell University)

Gates Hall’s facade features perforated stainless steel panels that mitigate heat loading. (Courtesy Cornell University)

The facade’s stainless steel panels form a wave pattern, cutting down on glare and heat loads while representing the contribution computing has made to design.

The recently completed Bill & Melinda Gates Hall at Cornell University in Ithaca, New York, combines the schools’ Computing Science and Information Science departments under one roof. Designed by Morphosis, the facility encourages spontaneous interactions between these two disciplines with common spaces for comingling and transparent partitions that allow views, and daylight, to pass from space to space. The building envelope, a unitized glass curtain wall system, is wrapped in a band of perforated stainless steel panels that forms a dynamic, angular wave pattern across the surface. In addition to creating a sense of movement across the exterior, it serves as a fitting symbol of the contribution that computing has had on the arts and sciences: The architects used advanced digital modeling tools to design the geometry, pattern, and details of this additive layer, and made it to function both as an aesthetic gesture as well as a performance enhancing element of the architecture. “The goal was to establish a consistent level of daylighting throughout the interior,” said Cory Brugger, director of design technology at Morphosis. “We maximized the exterior glazing to get the light coming through. The design of the screen reduces the amount of glare and heat gain and starts to help with the performance of the facade system itself.”

The stainless steel panels connect to the steel reinforced  vertical mullions of the unitized curtain wall system. (Courtesy Cornell University)

The perforated stainless steel panels connect to the steel reinforced vertical mullions of the unitized curtain wall system. (Courtesy Cornell University)

  • Facade Manufacturer
    Zahner (perforated stainless steel panels), YKK AP (unitized curtain wall), W&W Glass (exterior cladding systems), Erie AP (curtain wall engineering and fabrication), Viracon (glazing), Wasco Products Inc. (skylights)
  • Architect
    Morphosis
  • Facade Installer
    W&W Glass
  • Location
    Ithaca, NY
  • Date of Completion
    2014
  • System
    Unitized double-glazed and spandrel curtain wall with exterior perforated stainless steel panels
  • Products
    YKK YUW 750XT 4 sided SSG Unitized Curtain Wall system, perforated stainless steel panels from Zahner, Viracon VNE 24-63

Located between Cornell’s historic Barton Hall and Hoy Field, Gates Hall fits 100,000 square feet of program in fives stories on a site roughly 150 feet long by 80 feet wide. “It’s a fairly squat building with a large foot print,” said Brugger. “So what we wanted to do was find a way to give some break on the facade.” The metal screen forms a band that covers the second through fourth floors. The first and fifth floors are fully glazed. At the main entrance on the building’s west side there is a large cantilever covering an entry court with some indigenous plantings and sculptural precast concrete “rocks.” Here, the facade becomes an integral part the overall massing of building, breaking down proportions of footprint and creating a sense of motion, giving the sense that structure is coiled to pounce across the road.

Morphosis specified a YKK YUW 750XT 4 sided SSG unitized curtain wall system outfitted with a Viracon VNE 24-63 double glazed insulated glass unit. Ithaca does have a heavy winter, and heating days predominate over cooling days for the facility. To optimize the daylight/insulation ratio, the architects intermixed fully glazed panels with insulated spandrel panels. “There’s an alternation between full glazing and spandrel panels that helped us balance the environment and meet our efficiency target,” said Brugger. “It’s not fully glazed everywhere.”

The angle of the panels varies depending on solar orientation. A more obtuse angle was applied to those on the south face. (Courtesy Cornell University)

The angle of the panels varies depending on solar orientation. A more obtuse angle was applied to those on the south face. (Courtesy Cornell University)

The curtain wall’s aluminum mullions are reinforced with steel, giving them the necessary stiffness to support the screen system. Morphosis designed the screen system in its own proprietary software program and used Rhino with Grasshopper to do the visualization. To coordinate fabrication of the panels with Zahner in Kansas City, the architects worked with CATIA and Digital Project. Zahner fabricated the screen panels out of 316 stainless steel. There are 457 panels total, in 13 different types, that bolt back to the vertical mullions at one of three elevations. The perforated panels have an angel hair finish. “It’s a non-directional finish takes away most of the gloss of stainless steel and gives it a little more depth in reflectivity, kind of a clean, matte finish,” said Brugger. “It still has a certain luster and gloss, but it cuts down on glare.”

W&W Glass installed the facade, first putting up the YKK curtain wall and then erecting the screen system in a second pass. “We couldn’t unitize the two systems because they’re quite large and differently sized,” said Brugger. “Each stainless panel takes up two curtain wall modules.” The curtain wall modules are 5 feet 9 inches wide, whereas the stainless panels are 10 to 12 feet wide. The panels are set at different angles across the facade depending on solar orientation, with those on the south face at the most obtuse angle to create the deepest ledge for shading. This variation around the building envelope creates visual interest and expresses the computational nature of the design.

The upper floors extend in a dramatic cantilever to form a sheltered entrance plaza. (Courtesy Cornell University)

The upper floors extend in a dramatic cantilever to form a sheltered entrance plaza. (Courtesy Cornell University)